© 2024 г. М.В. БАЛАШОВ, д-р физ.-мат. наук (balashov73@mail.ru), K.З. БИГЛОВ (biglov.kz@phystech.edu)

(Институт проблем управления им. В.А. Трапезникова РАН, Москва), А.А. ТРЕМБА, канд. физ.-мат. наук (atremba@ipu.ru)

(Институт проблем управления им. В.А. Трапезникова РАН, Москва; Московский физико-технический институт, Долгопрудный)

О НЕКОТОРЫХ ЗАДАЧАХ С МНОГОЗНАЧНЫМИ ОТОБРАЖЕНИЯМИ¹

Рассматриваются некоторые задачи о многозначных отображениях, которые могут быть сведены к минимизации положительно однородной липшицевой функции на единичной сфере. Последняя задача может быть в некоторых случаях решена алгоритмом первого порядка – методом проекции градиента. В качестве одного из примеров рассмотрен случай, когда многозначное отображение есть множество достижимости автономной линейной управляемой системы. Для ряда постановок доказана линейная сходимость метода проекции градиента в рассматриваемой ситуации. Мы используем схему доказательства сходимости градиентного метода, предложенную Б.Т. Поляком, в случае выполнения неравенства Лежанского-Поляка–Лоясевича. В отличие от других способов решения, например при помощи аппроксимации множества достижимости, приведенные алгоритмы гораздо слабее зависят от размерности фазового пространства и других параметров задачи. Также возможна эффективная оценка ошибок. Численные эксперименты подтверждают эффективность рассматриваемого подхода. Помимо множества достижимости, рассмотренные алгоритмы могут быть применены к различным теоретико-множественным задачам с многозначными отображениями достаточно общего вида.

Ключевые слова: метод проекции градиента, многозначный интеграл, сильная выпуклость, опорное множество, условие Липшица, негладкий анализ.

DOI: 10.31857/S0005231024050024, EDN: YQFMTE

1. Введение

Пусть \mathbb{R}^n – вещественное евклидово пространство со скалярным произведением (\cdot, \cdot) и нормой $\|\cdot\| = \sqrt{(\cdot, \cdot)}$. Определим шар $\mathcal{B}_r(a) = \{x \in \mathbb{R}^n : \|x - a\| \leq r\}, (a \in \mathbb{R}^n, r > 0)$ и единичную сферу $\mathcal{S}_1 = \partial \mathcal{B}_1(0)$. Обозначим как int \mathcal{N} и $\partial \mathcal{N}$ внутренность и границу множества $\mathcal{N} \subset \mathbb{R}^n$ соответственно. Напомним, что опорной функцией для замкнутого выпуклого множества $\mathcal{N} \subset \mathbb{R}^n$ и вектора $p \in \mathbb{R}^n$ называется $s(p, \mathcal{N}) = \sup_{x \in \mathcal{N}}(p, x)$, а опорным

¹ Теоремы 1, 3, 4 и §5 получены М.В. Балашовым при финансовой поддержке РНФ, проект № 22-11-00042, https://rscf.ru/project/22-11-00042/ в ИПУ РАН. Теорема 2 и численные результаты раздела 6 получены А.А. Трембой при финансовой поддержке РНФ, проект № 21-71-30005, https://rscf.ru/project/21-71-30005/.

множеством называется $\mathcal{N}(p) = \{x \in \mathcal{N} : (p, x) = s(p, \mathcal{N})\}$. Множество $\mathcal{N}(p)$ называется опорным элементом, если оно одноточечно. Для выпуклого компакта \mathcal{N} множество $\mathcal{N}(p)$ является субдифференциалом (в смысле выпуклого анализа) опорной функции $s(p, \mathcal{N})$ в точке p. Функция $s(p, \mathcal{N})$ липшицева с постоянной $\|\mathcal{N}\| = \max\{\|x\| : x \in \mathcal{N}\}$. Пусть $P_{\mathcal{N}}x$ – метрическая проекция точки $x \in \mathbb{R}^n$ на замкнутое выпуклое множество \mathcal{N} .

Пусть $\mathcal{N} \subset \mathbb{R}^n \setminus \{0\}$ – выпуклый компакт, $f(p) = s(p, \mathcal{N})$. Рассмотрим задачу

(1)
$$\min_{\|p\|=1} f(p) = J.$$

Очевидно, что решение (1) – единичный вектор p_0 такой, что $p_0 = -z_0/||z_0||$, где $P_{\mathcal{N}}0 = \{z_0\}$ и $J = (p_0, z_0) = -||z_0||$. Также $z_0 \in \mathcal{N}(p_0)$. Таким образом поиск проекции нуля $z_0 = P_{\mathcal{N}}0$ эквивалентен задаче (1). Решение общей задачи поиска проекции имеет вид $P_{\mathcal{N}}x = x + P_{\mathcal{N}+(-x)}0$.

Напомним ряд алгоритмов решения задачи проецирования точки на выпуклое замкнутое множество \mathcal{N} . Каждый из алгоритмов зависит от способа задания множества \mathcal{N} . Если \mathcal{N} – многогранник, то можно воспользоваться квадратичным программированием и решить задачу $\min ||x||^2$ при ограничениях $(p_i, x) \leq s(p_i, \mathcal{N})$, где $\{p_i\}$ – набор единичных нормалей к граням \mathcal{N} . В ряде случаев можно применять метод альтернативных проекций при наличии условия трансверсальности, см. [1, § 8.5]. В [2] рассматриваются свойства оператора проектирования. Также рассматривается сходимость итерационного алгоритма проекции/отражения для нахождения пары точек, на которой достигается локальный минимум расстояния между двумя выпуклыми замкнутыми множествами или между замкнутым выпуклым множеством и замкнутым проксимально гладким множеством. Использование алгоритмов в духе метода условного градиента для нахождения проекций на выпуклые множества изучалось в [3]. В [4] авторы предложили итерационный алгоритм поиска проекции точки на множество уровня квадратичной функции. Некоторые алгоритмы поиска проекции Брегмана точки на замкнутое выпуклое множество могут быть найдены в [5].

Лучшая скорость сходимости, полученная в приведенных выше статьях, линейная. При этом предложенные алгоритмы зачастую не позволяют реализовать эффективный вычислительный процесс.

Далее предполагаем, что заданы опорная функция $s(p, \mathcal{N})$ и опорное множество $\mathcal{N}(p)$. "Заданы" означает, что можно вычислить $s(p, \mathcal{N})$ и $\mathcal{N}(p)$ для любого вектора $p \in \mathbb{R}^n$ с помощью формулы или достаточно эффективной вычислительной процедуры.

Пусть $\mathcal{M} \subset \mathbb{R}^n$ – выпуклый компакт, $\mathcal{R}(\cdot) : [0,T] \to 2^{\mathbb{R}^n}$, $\mathcal{R}(0) = \{0\}$ – непрерывное в метрике Хаусдорфа многозначное отображение с выпуклыми компактными значениями. Рассмотрим некоторые задачи, которые могут быть сведены к постановке (1).

Задача (P1). Для данного $t \ge 0$ найти минимальное расстояние между точками множеств $\mathcal{R}(t)$ и \mathcal{M} , т.е. величину $\rho(\mathcal{R}(t), \mathcal{M}) = \inf_{x \in \mathcal{R}(t), y \in \mathcal{M}} ||x - y||$. Найти минимальное $t \ge 0$, при котором $\rho(\mathcal{R}(t), \mathcal{M}) = 0$.

Задача (P2). Для данного $t \ge 0$ выяснить справедливость включения множеств $\mathcal{R}(t) \subset \mathcal{M}$. Найти максимальное $t \ge 0$, при котором $\mathcal{R}(t) \subset \mathcal{M}$.

Задача (Р3). Для данного $t \ge 0$ выяснить справедливость включения множеств $\mathcal{R}(t) \supset \mathcal{M}$. Найти минимальное $t \ge 0$, при котором $\mathcal{R}(t) \supset \mathcal{M}$.

Задачи (P1)–(P3) могут быть поставлены для произвольного многозначного непрерывного отображения с выпуклыми компактными значениями $\mathcal{R}(t)$ и выпуклого компакта \mathcal{M} . Рассмотрим частный случай многозначного интеграла вида

(2)
$$\mathcal{R}(t) = \int_{0}^{t} \mathcal{F}(s) \, ds,$$

где \mathcal{F} – многозначное отображение с выпуклыми компактными значениями. По умолчанию предполагается, что $0 \in \mathcal{F}(s)$ для всех $s \ge 0$. Интеграл рассматривается в смысле Аумана [6]:

$$\int_{0}^{t} \mathcal{F}(s) \, ds = \left\{ \int_{0}^{t} u(s) \, ds \; : \; u(s) \in \mathcal{F}(s) - \text{измеримая ветвь} \right\}.$$

По теореме Ляпунова о векторных мерах [7] интеграл является выпуклым компактом. Из формулы (2) и включения $0 \in \mathcal{F}(s)$ для всех $s \in [0, t]$ получаем возрастание $\{\mathcal{R}(t)\}_{t\geq 0}$ по включению $\mathcal{R}(t_1) \subset \mathcal{R}(t_2)$ для всех $0 \leq t_1 \leq t_2$. Также можно рассматривать множество \mathcal{M} , зависящее от t, т.е. $\mathcal{M}(t)$.

Опорная функция и опорное множество интеграла (2) могут быть легко вычислены: для единичного вектора p и любого $t \ge 0$ имеют место равенства

(3)
$$s(p,\mathcal{R}(t)) = s\left(p,\int_{0}^{t}\mathcal{F}(s)\,ds\right) = \int_{0}^{t}s(p,\mathcal{F}(s))\,ds, \quad \mathcal{R}(t)(p) = \int_{0}^{t}\mathcal{F}(s)(p)\,ds.$$

Другой класс множеств, для которых известна опорная функция и опорный элемент, – это конечные суммы линейных образов какого-то фиксированного множества \mathcal{M} с известными $s(p, \mathcal{M})$ и $\mathcal{M}(p)$, к примеру \mathcal{M} может быть эллипсоидом. Пусть $\mathcal{R}(t) = \sum_{k=1}^{m} A_k(t) B_1(0), A_k(t)$ – непрерывные невырожденные матрицы для всех $t \ge 0$. Тогда

(4)
$$s(p, \mathcal{R}(t)) = \sum_{k=1}^{m} s(p, A_k(t)B_1(0)) = \sum_{k=1}^{m} \|A_k^{\top}(t)p\|,$$
$$\mathcal{R}(t)(p) = \sum_{k=1}^{m} \frac{A_k(t)A_k^{\top}(t)p}{\|A_k^{\top}(t)p\|}.$$

60

Заметим, что конечная сумма эллипсоидов не является эллипсоидом в общем случае.

Одним из важнейших примеров является множество достижимости линейной автономной управляемой системы, которую рассмотрим в форме дифференциального включения

(5)
$$x'(t) \in Ax(t) + \mathcal{U}, \ x(0) = 0, \qquad x \in \mathbb{R}^n, \quad A \in \mathbb{R}^{n \times n},$$

где $\mathcal{U} \subset \mathbb{R}^n$ – компакт, $0 \in \mathcal{U}$. Множество достижимости (точки \mathbb{R}^n , в которые можно перевести систему (5) за время t) представимо в виде

(6)
$$\mathcal{R}(t) = \int_{0}^{t} e^{As} \mathcal{U} \, ds.$$

Напомним, что наиболее важное усиление условия выпуклости для компактных множеств из \mathbb{R}^n – это сильная выпуклость с радиусом R > 0. Подмножество \mathbb{R}^n называется сильно выпуклым с радиусом R, если оно может быть представлено как пересечение шаров радиуса R [8, 9]. Это свойство также может быть выражено через модуль выпуклости [10]. В [8] было доказано, что многозначный интеграл (2) является сильно выпуклым, если многозначное отображение $\mathcal{F}(s)$ имеет сильно выпуклые значения. В [11] была доказана в некотором виде локальная сильная выпуклость для интеграла (2) с $\mathcal{F}(s) = A(s)U$, где A(s) – некоторый класс гладких матриц, а U – многогранник. В [12] была рассмотрена аппроксимация второго порядка по времени типа Рунге–Кутты для дискретизации сильно выпуклых дифференциальных включений.

Различные задачи о многозначных интегралах могут решаться при помощи аппроксимации их значений. В [13] авторы описывают различные методы построений аппроксимаций множества достижимости управляемой системы, см. [13, табл. 1]. Один из самых общих и эффективных методов основывается на опорной функции (он также называется методом гиперплоскостей) [14]. Можно рассмотреть, например, внешнюю многогранную аппроксимацию для произвольного выпуклого компактного подмножества $\mathcal{M} \subset \mathbb{R}^n$ вида

(7)
$$\{x \in \mathbb{R}^n : (p, x) \leq s(p, \mathcal{M}), \quad \forall p \in \mathbb{G}\},\$$

где $\mathbb{G} \subset \mathbb{R}^n$ – конечная сетка единичных векторов, и решить соответствующую задачу для аппроксимации. Недостаток такого подхода в том, что разумные приближения могут быть получены только в пространствах малой размерности $2 \leq n < 5$ [15].

Также существуют подходы, использующие особые аппроксимации, например при помощи зонотопов [16] или эллипсоидальной техники [17]. Последняя иногда позволяет описывать множество достижимости локально.

В данной статье рассматриваются $\mathcal{R}(t)$, \mathcal{M} , \mathcal{N} как значения многозначного интеграла или конечные суммы эллипсоидов. Показывается, как можно свести различные задачи, в первую очередь (P1)–(P3), о подобных множествах к

задаче (1). Минимизируемая в (1) функция f(p) оказывается при этом опорной функцией какого-то выпуклого компакта \mathcal{N} , зависящего от $\mathcal{R}(t)$ и \mathcal{M} . Мы доказываем выполнение условия Лежанского–Поляка–Лоясевича [18, формула (4.6)] в задаче (1), что гарантирует линейную скорость сходимости метода проекции градиента. Опорная функция f(p) и ее градиент могут быть вычислены с помощью (3) для многозначного интеграла или (4) для суммы эллипсоидов. Опорная функции и ее градиент позволяют получить эффективную схему вычислений. Также рассматривается локальное условие сильной выпуклости: для некоторого R > 0 для решения p_0 , $||p_0|| = 1$ задачи (1) должно иметь место включение $\mathcal{N} \subset B_R(\mathcal{N}(p_0) - Rp_0)$. При выполнении данного условия задача может быть решена методом проекции градиента с фиксированной величиной шага или выбором величины шага по Армихо. Во всех алгоритмах доказана линейная скорость сходимости, рассматриваются различные примеры.

Заметим, что есть другой способ решения задачи (1), который заключается в использовании метода условного градиента. Рассматриваются функция $g(x) = \frac{1}{2} ||x||^2$, начальная точка $x_1 \in \mathcal{N}$ и итерации $\overline{x}_k =$ $= \arg \max_{x \in \mathcal{N}} (-g'(x_k), x), \quad x_{k+1} \in \operatorname{Arg\,min}_{x \in [x_k, \overline{x}_k]} g(x)$. Отметим, что для обеспечения линейной сходимости указанного алгоритма обычно требуется сильная выпуклость множества \mathcal{N} [18, теорема 6.1, п. 5)].

1.1. Основные обозначения и вспомогательные результаты

Для множеств \mathcal{M} и \mathcal{N} из \mathbb{R}^n определяются операции $\mathcal{M} + \mathcal{N} = \{x + y : x \in \mathcal{M}, y \in \mathcal{N}\}$ и $\mathcal{M}^{\underline{*}} \mathcal{N} = \{x : x + \mathcal{N} \subset \mathcal{M}\} = \bigcap_{x \in \mathcal{N}} (\mathcal{M} - x)$. Они называются суммой и разностью Минковского для множеств \mathcal{M} и \mathcal{N} .

Обозначим через $\varrho(x, \mathcal{M}) = \inf_{y \in \mathcal{M}} ||x - y||$ расстояние от точки x до множества \mathcal{M} .

Расстояние Хаусдорфа на пространстве выпуклых компактных подмножеств \mathbb{R}^n задается по формуле

$$h(\mathcal{M}, \mathcal{N}) = \max_{\|p\|=1} |s(p, \mathcal{M}) - s(p, \mathcal{N})|.$$

Введем функцию $[a]_{-} = |a|$ для $a \leq 0$ и $[a]_{-} = 0$ для a > 0. Тогда $[\min_{\|p\|=1}(s(p,\mathcal{M}) - s(p,\mathcal{N}))]_{-}$ называется полурасстоянием от \mathcal{N} до \mathcal{M} , оно равняется $\max_{x\in\mathcal{N}}\varrho(x,\mathcal{M})$.

Пусть множество $\mathcal{R}(t)$ (2) зависит от параметра t. Будем обозначать *опорное множество* для вектора p как $\mathcal{R}(t)(p)$. Из определения Ауманна или Римана интеграла следует, что для произвольной матрицы $J \in \mathbb{R}^{m \times n}$ имеет место $J\mathcal{R}(t) = \int_0^t J\mathcal{F}(s) ds$. В частности, для любого вектора $p \in \mathbb{R}^n$ имеем $\mathcal{R}(t)(p) = \int_0^t \mathcal{F}(s)(p) ds$.

Множество $\mathcal{M} \subset \mathbb{R}^n$ называется *сильно выпуклым с радиусом* R > 0, если его можно представить как пересечение некоторого набора замкнутых евклидовых шаров радиуса R. Для произвольного сильно выпуклого множества \mathcal{M} с радиусом R существует другое сильно выпуклое с радиусом R множество \mathcal{N} такое, что $\mathcal{M} + \mathcal{N} = \mathcal{B}_R(0)$ [8, 19]. Сильная выпуклость выпуклого компакта \mathcal{M} с радиусом R эквивалентна липпицевости опорного элемента $\mathcal{M}(p)$ на единичной сфере: для всех ||p|| = ||q|| = 1 выполняется $||\mathcal{M}(p) - \mathcal{M}(q)|| \leq \leq R||p-q||$ [8].

Будем говорить, что выпуклое множество $\mathcal{M} \subset \mathbb{R}^n$ равномерно гладкое с постоянной r > 0, если $\mathcal{M} = \mathcal{M}_0 + \mathcal{B}_r(0)$, где $\mathcal{M}_0 \subset \mathbb{R}^n$ – выпуклый компакт. Это определение появлялось ранее, см. [20, определение 2.1].

Пусть $\varepsilon > 0$, $S_0 \subset \mathbb{R}^n$ – гладкое многообразие без края, $\overline{x} \in S_0$. Для дифференцируемой по Фреше функции $f: S_0 + \operatorname{int} \mathcal{B}_{\varepsilon}(0) \to \mathbb{R}$ определим $\mathcal{S} = \mathcal{S}(f, \overline{x}) = \{x \in S_0 : f(x) \leq f(\overline{x})\}$. Пусть \mathcal{S} – гладкое многообразие с краем $\partial \mathcal{S} \subset \{x \in S_0 : f(x) = f(\overline{x})\}$. Будем говорить, что на \mathcal{S} выполняется условие *Лежанского–Поляка–Лоясевича* (LPL) [18; 21, §3.2] с постоянной $\mu > 0$, если $\Omega = \operatorname{Arg\,min}_{x \in \mathcal{S}} f(x) \neq \emptyset$ и для всех $x \in \mathcal{S}$ имеет место неравенство

$$\|P_{\mathcal{T}_x}f'(x)\|^2 \ge \mu(f(x) - f(\Omega)).$$

Здесь \mathcal{T}_x – касательное пространство к многообразию S в точке $x \in S$, $P_{\mathcal{T}_x}$ – ортогональный проектор на \mathcal{T}_x , f'(x) – производная Фреше функции f в точке $x \in S$.

 $\mathcal{\Pi}$ емма 1. Для любых ненулевых векторов $p, q \in \mathbb{R}^n$ имеет место $\left\| \frac{p}{\|p\|} - \frac{q}{\|q\|} \right\| \leq \frac{\|p-q\|}{\sqrt{\|p\| \|q\|}}.$

Предложение 1 [8]. Пусть многозначное отображение $\mathcal{F} : [0,t] \to 2^{\mathbb{R}^n}$ принимает сильно выпуклые значения $\mathcal{F}(s)$ с интегрируемым на [0,t] радиусом R(s) для всех $s \in [0,t]$ и непрерывно в метрике Хаусдорфа. Тогда интеграл $\mathcal{R}(t) = \int_0^t \mathcal{F}(s) \, ds$ сильно выпуклый с радиусом $R = \int_0^t R(s) \, ds$.

Упомянем, что многозначный интеграл может быть сильно выпуклым, даже если множества $\mathcal{F}(s)$ таковыми не являются. Такая ситуация типична в размерности n = 2 [22]. Тем не менее множество достижимости линейной управляемой системы в размерности $n \ge 3$ часто не является сильно выпуклым.

Рассмотрим элементарный пример системы (5) (похожая система рассматривается ниже в примере 1). Пусть множество управления – отрезок: $\mathcal{U} = \operatorname{co} \{\pm v\}$. Введем вспомогательную аналитическую функцию $g_p(s) =$ $= (p, e^{As}v)$. Для фиксированного p опорное множество $\mathcal{R}(t)(p)$ состоит из одного элемента, если $g_p(s) \not\equiv 0$. Выполнение условия полного ранга

$$\operatorname{span}\{A^i v\}_{i=0}^{n-1} = \mathbb{R}^n \quad \Leftrightarrow \quad \operatorname{span} \mathcal{R}(t) = \mathbb{R}^n$$

гарантирует, что g_p не есть тождественный нуль. Из аналитичности g_p следует, что у уравнения $g_p(s) = 0$ конечное число корней на [0, t]. Из конечности числа корней вытекает строгая выпуклость $\mathcal{R}(t)$. Для опорного элемента имеет место формула

(8)
$$\mathcal{R}(t)(p) = \int_{0}^{t} e^{As} v \times \operatorname{sign} g_p(s) \, ds = \sum_{i=0}^{k} \epsilon_i \int_{s_i(p)}^{s_{i+1}(p)} e^{As} v \, ds,$$

где $s_i(p), i = \overline{1, k}$ – корни $g_p(s)$ на [0, t] (вследствие аналитичности g_p они изолированы и их конечное число), $s_0 = 0$, $s_{k+1} = t$, $\epsilon_i = \pm 1$ есть знак $g_p(s)$ при $s \in [s_i, s_{i+1}]$. Таким образом, исследование поведения опорного элемента сводится к исследованию зависимости корней аналитической функции $g_p(s)$ от параметра р. Легко заметить, что если все корни простые (и для простоты лежат в интервале (0, t), то из теоремы о неявной функции следует, что они (корни) гладко зависят от p в некоторой окрестности, а значит, опорный элемент – тоже гладкая функция р в этой окрестности. Отсюда вытекает локальная липшицевость опорного элемента $\mathcal{R}(t)(p)$ по p. Обратная ситуация возникает при наличии кратных корней на отрезке при некотором заданном p. Как показано в примере ниже, в таком случае характерно нарушение липшицевости опорного элемента в точке р, что ведет к отсутствию сильной выпуклости. Тем не менее легко показать, что множество векторов p, для которых функция q_p имеет кратные корни на [0, t], имеет меру нуль. Некоторые обобщения подобного подхода на многозначные интегралы более общего вида приведены в [11].

Отметим, что если все собственные значения A, то оптимальное управление $u(t) = \mathcal{U}(e^{A^{\top}(T-t)}p) = v \operatorname{sign} g_p$ (как T-t), $t \in [0,T]$ имеет не более n-1переключений, что является частным случаем теоремы Фельдбаума о числе переключений [23, теорема 2.11]. В примерах динамическая система задается уравнением $\dot{x} = Ax + Bu$, $u \in \mathcal{U}$, $t \in [0,T]$. Оптимальное управление в такой системе, приводящее к опорному элементу множества достижимости $\mathcal{R}(t)(p)$, имеет вид [24]:

(9)
$$u(t) = \mathcal{U}(B^{\top} e^{A^{\top}(T-t)}), \quad t \in [0,T].$$

Рассмотрим систему

(10)
$$\dot{x} = Ax + Bu$$
, $x(0) = 0$, $u \in \mathbb{R}$: $|u| \leq 1$, $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Следуя замечаниям выше, положим

$$g_p(s) = (p, e^{As}B) = \frac{1}{2}e^{-s}(p_1s^2 + 2p_2s + 2p_3).$$

Пусть $p_0 = \frac{1}{3}(2, -2, 1)$, заметим что $g_{p_0}(s) = \frac{1}{3}e^{-s}(s-1)^2$ имеет кратный корень при s = 1. Рассмотрим поведение опорного элемента в окрестности p_0 . Напомним, что $f(s) \simeq g(s), s \to 0$, если f(s) = O(g(s)) и $g(s) = O(f(s)), s \to 0$.

Рис. 1. Множество достижимости системы (10) и нормали, для которых нет локальной липшицевости опорного элемента, при t = 2.

Рассмотрим для $\varepsilon \in (0,1)$ вектор $q = q(\varepsilon) = \frac{(2,-2,1-\varepsilon)}{\sqrt{9-2\varepsilon+\varepsilon^2}}$. Легко заметить, что $\|p-q(\varepsilon)\| \asymp \varepsilon, \varepsilon \to 0$, а также найти корни $g_{q(\varepsilon)} =: s_{1,2}(\varepsilon) = 1 \pm \sqrt{\varepsilon}$. Тогда для $t > 1 + \sqrt{\varepsilon}$ можно записать для опорного элемента

$$\mathcal{R}(t)(p) - \mathcal{R}(t)(q) = \int_{1-\sqrt{\varepsilon}}^{1+\sqrt{\varepsilon}} e^{-s} (s^2, \ 2s, \ 2)^\top \, ds,$$
$$|\mathcal{R}(t)(p) - \mathcal{R}(t)(q)|| \ge \int_{1-\sqrt{\varepsilon}}^{1+\sqrt{\varepsilon}} 2e^{-s} \, ds \asymp \sqrt{\varepsilon}, \ \varepsilon \to 0.$$

Таким образом, в окрестности точки p_0 нарушается липшицевость опорного элемента, а значит множество $\mathcal{R}(t)$ не сильно выпукло.

На рис. 1 показан вид множества достижимости системы при t = 2. Нормали, для которых нет локальной липшицевости опорного элемента, показаны на рис. 1 сверху, множество этих нормалей является частью границы нормального конуса в вершине множества. Кроме того, можно заметить, что множество достижимости обладает структурой, похожей на клеточный комплекс. Эта структура возникает вследствие того, что, благодаря (8), опорный элемент можно задать положениями и кратностями корней функции $g_p(s)$ на отрезке [0, t], а также знаком $g_p(s)$ вблизи левого конца отрезка. Если матрица рассматриваемой системы имеет вещественные собственные значения, то суммарная кратность корней $g_p(s)$ не превосходит (n-1). Можно показать,

что в этом случае произвольная конфигурация корней даст при подстановке в (8) некоторую точку $\partial \mathcal{R}(t)$. Рассмотрение наборов корней с различными суммарными кратностями позволяет выделить в множестве достижимости криволинейные ребра и грани. Некоторые обобщения рассуждений выше приведены в [11].

Лемма 2. Пусть $A_1 = J^{-1}AJ$ – жорданова форма матрицы A системы (5), $\mathcal{U}_1 = J^{-1}\mathcal{U}$, $J \in \mathbb{R}^{n \times n}$ – матрица перехода. Если множество $\mathcal{R}_1(t) = \int_0^t e^{A_1s}\mathcal{U}_1 \, ds$ сильно выпукло с радиусом r, то $\mathcal{R}(t) = \int_0^t e^{As}\mathcal{U} \, ds$ также сильно выпукло с радиусом $R = r\alpha^2/\beta$, где $\alpha = \|J\| = \max_{\|h\|=1} \|Jh\|$, $\beta = \min_{\|h\|=1} \|Jh\|$.

Заметим, что из [25, Теорема 3] следует, что любой эллипсоид

$$\mathcal{N} = \left\{ x \in \mathbb{R}^n : \sum_{k=1}^n \frac{x_k^2}{\lambda_k^2} \leqslant 1 \right\}, \quad \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n > 0,$$

является сильно выпуклым с радиусом $R = \frac{\lambda_1^2}{\lambda_n}$.

Лемма 3. Пусть в системе (5) множество \mathcal{U} является равномерно гладким с постоянной r > 0. Тогда множество $\mathcal{R}(t)$ (6) является равномерно гладким с постоянной $r_0 = r \int_0^t \frac{\lambda_n^2(s)}{\lambda_1(s)} ds$, где $\lambda_1(s) \ge \ldots \ge \lambda_n(s) > 0$ – это полуоси эллипсоида $e^{As} \mathcal{B}_1(0)$.

Заметим, что из доказательства леммы 3 следует, что любой эллипсоид

$$\mathcal{N} = \left\{ x \in \mathbb{R}^n : \sum_{k=1}^n \frac{x_k^2}{\lambda_k^2} \leqslant 1 \right\}, \quad \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n > 0,$$

является равномерно гладким с постоянной $r = \frac{\lambda_n^2}{\lambda_1}$.

В частности, леммы 2 и 3 показывают, что достаточно рассматривать системы (5) с матрицей A, приведенной к жордановой форме.

Следующее предложение оценивает убывание липшицево дифференцируемой функции за один шаг метода проекции градиента.

Предложение 2 [26, Лемма 2]. Рассмотрим задачу $\min_{\mathcal{M}} f(x)$ в \mathbb{R}^{n} . Пусть \mathcal{M} – замкнутое множество, f' – липшицева функция с постоянной L_1 . Фиксируем $0 < \lambda \leq \frac{1}{L_1}$. Пусть $x_0 \in \mathcal{M}$ и $y_0 \in P_{\mathcal{M}}(x_0 - \lambda f'(x_0))$. Тогда

$$f(x_0) - f(y_0) \ge \frac{1}{2} \left(\frac{1}{\lambda} - L_1\right) ||x_0 - y_0||^2.$$

Для выполнения предыдущего утверждения условие Липшица для f' с постоянной L_1 должно выполняться на отрезке $[x_0, y_0]$, см. доказательство утверждения 2.2 [27]. При решении задач (P1)–(P3) будем требовать наличие некоторых свойств у множеств, с которыми работаем. Приведем их здесь, чтобы далее не повторяться.

- 1. Множество $\mathcal{R}(s)$ сильно выпукло с радиусом $R_T > 0$ для всех $s \in [0, T]$.
- 2. Множество \mathcal{M} равномерно гладкое с постоянной r > 0: $\mathcal{M} = \mathcal{M}_0 + \mathcal{B}_r(0)$, при этом
 - (a) множество \mathcal{M}_0 сильно выпукло с постоянной $R_0 > 0$.

(b)
$$r > R_T$$
.

- 3. Множество \mathcal{M} сильно выпукло с постоянной $R_0 > 0$.
- 4. Множество \mathcal{U} равномерно гладкое с постоянной $r_{\mathcal{U}} > 0$: $\mathcal{U} = \mathcal{U}_0 + \mathcal{B}_{r_{\mathcal{U}}}(0)$.
- 5. $r(t) > R_0$, где $r(t) = r_{\mathcal{U}} \int_0^t \frac{\lambda_n^2(s)}{\lambda_1(s)} ds$ и $\lambda_1(s) \ge \ldots \ge \lambda_n(s) > 0$ это полуоси эллипсоида $e^{As} \mathcal{B}_1(0)$.

Первое утверждение выполняется, если, в частности, множество $e^{As}\mathcal{U}$ сильно выпукло с радиусом R(s) > 0. Тогда из предложения 1 и линейности интеграла следует, что

$$\mathcal{R}(T) = \int_{0}^{T} e^{As} \mathcal{U} \, ds = \int_{0}^{t} e^{As} \mathcal{U} \, ds + \int_{t}^{T} e^{As} \mathcal{U} \, ds = \mathcal{R}(t) + \int_{t}^{T} e^{As} \mathcal{U} \, ds,$$

и получаем, что множество

$$\mathcal{R}(t) = \bigcap \left\{ \mathcal{R}(T) - x : x \in \int_{t}^{T} e^{As} \mathcal{U} \, ds \right\}$$

сильно выпукло с радиусом $R_T = \int_0^T R(s) \, ds$ для всех $t \in [0, T]$.

1.3. Структура статьи

В разделах 2–4 приводятся достаточные условия для линейной сходимости метода проекции градиента в некоторой задаче оптимизации опорной функции, к которой сводятся задачи (P1)–(P3). Это решает задачи для фиксированного $t \in [0, T]$.

В разделе 5 обсуждается поиск начального приближения p_1 для итерационного процесса. Даны оценки вероятности нахождения p_1 случайным поиском.

В разделе 6 приводятся результаты различных численных экспериментов. Тут же рассматривается поиск оптимального значения *t* для задач (P1)–(P3).

2. Задача (Р1)

Используемые предположения: 1, 2(a).

Для всех $t \in [0,T]$ рассмотрим множество $\mathcal{N}(t) = \mathcal{R}(t) + (-\mathcal{M}_0)$. Множество $\mathcal{N}(t)$ сильно выпукло с радиусом $R = R_T + R_0$ как сумма сильно выпуклых множеств [19]. Равенство $\mathcal{R}(t) \cap \mathcal{M} = \emptyset$ может быть переформулировано следующим образом: расстояние от нуля до $\mathcal{N}(t)$ больше чем r > 0. Если это так, то $0 \notin \mathcal{R}(t) + (-\mathcal{M})$, а в противном случае $0 \in \mathcal{R}(t) + (-\mathcal{M})$. На языке опорных функций это сводится к задаче минимизации функции $f(p) = s(p, \mathcal{N}(t)) = s(p, \mathcal{R}(t)) + s(p, -\mathcal{M}_0)$:

(11)
$$\min_{\|p\|=1} f(p) = J.$$

Если J < -r, то расстояние от нуля до множества $\mathcal{N}(t)$ больше r. Если же $J \ge -r$, то расстояние от нуля до множества $\mathcal{N}(t)$ не превышает r и, следовательно, $0 \in \mathcal{R}(t) + (-\mathcal{M})$. Заметим, что

(12)
$$f'(p) = \mathcal{R}(t)(p) + (-\mathcal{M}_0)(p) = \int_0^t (e^{As}\mathcal{U})(p) \, ds + (-\mathcal{M}_0)(p).$$

 $T \in o p \in Ma \ 1.$ Фиксируем $\varepsilon \in (0, 1)$. Предположим, что $\varepsilon (11) \ J < 0.$ Тогда при выполнении приведенных выше предположений функция $f \in (11)$ удовлетворяет условию LPL на многообразии $\mathcal{S} = \{p \in \mathcal{S}_1 : f(p) \leq 0\}$ с постоянной $\mu = |J|$. Также функция f имеет градиент, удовлетворяющий условию Липшица с постоянной $L_1 = \frac{R}{1-\varepsilon} = \frac{R_T + R_0}{1-\varepsilon}$ на множестве $\{p \in \mathbb{R}^n : 1-\varepsilon \leq \|p\| \leq \le 1+\varepsilon\}$.

Рассмотрим следующий итерационный процесс:

(13)
$$p_1 \in \mathcal{S} \text{ (r.e. } f(p_1) \leq 0), \quad p_{k+1} = P_{\mathcal{S}_1}(p_k - \lambda f'(p_k)), \qquad \lambda \in \left(0, \frac{1}{L_1}\right].$$

Если $p_k \in \mathcal{S}$, то $p_{k+1} \in \mathcal{S}$. Действительно, из предложения 2 следует, что

$$f(p_k) - f(p_{k+1}) \ge \frac{1}{2} \left(\frac{1}{\lambda} - L_1\right) \|p_k - p_{k+1}\|^2 \ge 0, \quad f(p_{k+1}) \le f(p_k) \le 0.$$

Рассмотрим точку $p_k - \lambda f'(p_k)$. Имеем

$$||p_k - \lambda f'(p_k)|| \ge (p_k, p_k - \lambda f'(p_k)) = 1 - \lambda(p_k, f'(p_k)) = 1 - \lambda f(p_k) \ge 1.$$

 $T \, eope Ma \, 2.$ Предположим, что функция f липшицева c постоянной $L = \|\mathcal{N}(t)\|$, отображение f' липшицево на S_1 c постоянной $R = R_T + R_0$. Также предполагаем J < 0. Положим $L_1 = 2R$.

Фиксируем $\lambda \in (0, \min\{\frac{1}{L_1}, \frac{1}{2L}\})$. Тогда алгоритм (13) сходится к минимуму $p_0 \in S_1$ с линейной скоростью:

$$f(p_{k+1}) - f(p_0) \leq q \ (f(p_k) - f(p_0)),$$
$$\|p_{k+1} - p_k\| \leq q^{k/2} \sqrt{2\lambda(f(p_1) - f(p_0))},$$
$$q = 1 - \frac{\lambda|J|}{2L\lambda + 2} \in (0, 1).$$

Следующий пример показывает, что условие острого минимума вида $\exists \alpha > 0$, такое что $f(p) - f(p_0) \ge \alpha ||p - p_0||$, не выполняется для всех $p \in S$.

Рассмотрим L > r > 0, $||p_0|| = 1$ и множество $\mathcal{N} = \mathcal{B}_r(-Lp_0)$. Тогда для всех $p \in \mathcal{S}_1$ имеем

$$s(p, \mathcal{N}) - s(p_0, \mathcal{N}) = L(1 - (p, p_0)) = \frac{L}{2} ||p - p_0||^2.$$

Замечание 1. Приведенные выше результаты могут быть доказаны при более локальных условиях. Вместо предположения 1 о сильной выпуклости $\mathcal{R}(T)$ с радиусом R_T можно потребовать выполнения для всех $p \in S$ опорного принципа для множества $\mathcal{R}(t)$: существует $R_T > 0$, такое что

(14)
$$\mathcal{R}(t) \subset B_{R_T}(\mathcal{R}(t)(p) - R_T p), \quad \forall p \in \mathcal{S}.$$

Предположение 2(a), относящееся к \mathcal{M} , должно быть выполнено.

В данной ситуации множество $Z(t) = \mathcal{R}(t) + (-\mathcal{M}_0)$ удовлетворяет опорному принципу для всех $p \in \mathcal{S}$ с радиусом $R = R_T + R_0$:

$$Z(t) \subset B_R(\mathcal{N}(t)(p) - Rp), \quad \forall p \in \mathcal{S}.$$

Для любых $p, q \in \mathcal{S}$ получаем

$$\begin{split} \|\mathcal{N}(t)(p) - Rp - \mathcal{N}(t)(q)\|^2 &\leqslant R^2, \quad \|\mathcal{N}(t)(q) - Rq - \mathcal{N}(t)(p)\|^2 \leqslant R^2 \\ & \\ \mathbf{H} \quad \|\mathcal{N}(t)(p) - \mathcal{N}(t)(q)\|^2 \leqslant 2R(p,\mathcal{N}(t)(p) - \mathcal{N}(t)(q)), \\ \|\mathcal{N}(t)(q) - \mathcal{N}(t)(p)\|^2 \leqslant 2R(q,\mathcal{N}(t)(q) - \mathcal{N}(t)(p)) = 2R(-q,\mathcal{N}(t)(p) - \mathcal{N}(t)(q)), \end{split}$$

следовательно, $\|\mathcal{N}(t)(p) - \mathcal{N}(t)(q)\| \leq R \|p - q\|$. Принимая во внимание, что для любых $p, q \in S$ меньшая дуга окружности радиуса 1 с центром в 0 и концевыми точками p, q лежит в S, можно повторить доказательства теорем 1 и 2 в рассматриваемом случае. Для обобщения теоремы 1 нужно брать $p, q \in \mathbb{R}^n$ с $\frac{p}{\|p\|}, \frac{q}{\|q\|} \in S$, т.е. условие Липшица будет доказываться на множестве $\left\{ p \in \mathbb{R}^n : 1 - \varepsilon \leq \|p\| \leq 1 + \varepsilon, \ \frac{p}{\|p\|} \in S \right\}$.

3. Задача (Р2)

Используемые предположения: 1, 2(b), 3.

Фиксируем $\varepsilon \in (0, r - R_T)$. Рассмотрим ε -окрестность $\mathcal{R}_{\varepsilon}(t) = \mathcal{R}(t) + \mathcal{B}_{\varepsilon}(0)$ множества $\mathcal{R}(t)$. Включение $\mathcal{R}(t) \subset \mathcal{M}$ означает, что

$$\max_{x \in \mathcal{R}_{\varepsilon}(t)} \varrho(x, \mathcal{M}) \leqslant \varepsilon,$$

и наоборот, если $\max_{x \in \mathcal{R}_{\varepsilon}(t)} \varrho(x, \mathcal{M}) > \varepsilon$, то $\mathcal{R}(t) \not\subset \mathcal{M}$. На языке опорных функций можно поставить следующую эквивалентную задачу: найти минимум функции $f(p) = s(p, \mathcal{M}) - s(p, \mathcal{R}_{\varepsilon}(t))$:

(15)
$$\min_{\|p\|=1} f(p) = J.$$

Если $J \ge -\varepsilon$, то $\mathcal{R}(t) \subset \mathcal{M}$, в случае $J < -\varepsilon$ выполнено $\mathcal{R}(t) \not\subset \mathcal{M}$.

Пусть $S_1 = \{p : |p|| = 1\}$ и $S = \{p \in S_1 : f(p) \leq 0\}, p_0 \in S_1$ – решение (15). Предположим, что $S \neq \emptyset$. Рассмотрим следующий итерационный процесс:

(16)
$$p_1 \in \mathcal{S}, \qquad p_{k+1} = P_{\mathcal{S}_1}(p_k - \lambda f'(p_k)).$$

Tеорема 3. Пусть выполняются предположения раздела 3 и в задаче (15) имеет место J < 0. Пусть $r_0 = r - R_T - \varepsilon > 0$, $L = ||\mathcal{M} \stackrel{*}{\to} \mathcal{R}_{\varepsilon}(t)|| > 0$. Тогда для любых $p_1 \in S$ и $0 < \lambda \leq \min\{r_0^2/R_0^3, 1/(2L), 1/(2R_0)\}$ итерации (16) сходятся с линейной скоростью к решению p_0 :

$$||p_{k+1} - p_0|| \le q ||p_k - p_0||, \qquad q = \sqrt{1 - \frac{2r_0^2}{R_0}\lambda + R_0^2\lambda^2} \in (0, 1).$$

Замечание 2. Как и в разделе 2, вышеприведенные результаты могут быть доказаны при более локальных предположениях. Вместо предположения 1 о сильной выпуклости $\mathcal{R}(s)$ для всех $s \in [0, T]$ с радиусом R_T можно потребовать выполнения для всех $p \in S$ опорного условия для множества $\mathcal{R}(t)$: существует $R_T > 0$, такое что для любого числа $\varepsilon \in (0, r - R_T)$ выполняется

(17)
$$\mathcal{M}(p) - \mathcal{R}(t)(p) + \mathcal{R}(t) \subset B_{R_T}(\mathcal{M}(p) - R_T p) \subset C = B_{r-\varepsilon}(\mathcal{M}(p) - (r-\varepsilon)p) \subset \mathcal{M}, \quad \forall p \in \mathcal{S}.$$

Предположения 2(b), 3, касающиеся \mathcal{M} , должны выполняться.

В рассматриваемой ситуации имеем

(18)
$$\mathcal{M}(p) - \mathcal{R}(t)(p) - \varepsilon p + \mathcal{R}_{\varepsilon}(t) \subset \mathcal{M}, \quad \forall p \in \mathcal{S}$$

и, следовательно, $f'(p) = \mathcal{M}(p) - \mathcal{R}(t)(p) - \varepsilon p = \mathcal{M}(p) - \mathcal{R}_{\varepsilon}(t)(p) =$ = $(\mathcal{M} \stackrel{*}{=} \mathcal{R}_{\varepsilon}(t))(p)$ для всех $p \in S$, так как $f'(p) \in \mathcal{M} \stackrel{*}{=} \mathcal{R}_{\varepsilon}(t)$ и (p, f'(p)) == $s(p, \mathcal{M} \stackrel{*}{=} \mathcal{R}_{\varepsilon}(t))$ для всех $p \in S$. Действительно, фиксируем $p \in S$. Из включения $f'(p) + \mathcal{R}_{\varepsilon}(t) \subset \mathcal{M}$ получаем $f'(p) \in \mathcal{M} \stackrel{*}{=} \mathcal{R}_{\varepsilon}(t)$. С другой стороны, $(p, f'(p)) + s(p, \mathcal{R}_{\varepsilon}(t)) = s(p, \mathcal{M})$ и, таким образом, $(p, f'(p)) = s(p, \mathcal{M}) - -s(p, \mathcal{R}_{\varepsilon}(t)) \ge co(s(p, M) - s(p, \mathcal{R}_{\varepsilon}(t)) = s(p, \mathcal{M} \stackrel{*}{=} \mathcal{R}_{\varepsilon}(t)).$

Дальнейшие шаги повторяют доказательство теоремы 3.

4. Задача (Р3)

Используемые предположения: 1, 3, 4, 5.

Из леммы 3 следует, что множество $\mathcal{R}(t)$ является равномерно гладким с постоянной r(t), следовательно $R_T \ge r(t)$.

Фиксируем $\varepsilon \in (0, r(t) - R_0)$. Рассмотрим ε -окрестность $\mathcal{M}_{\varepsilon} = \mathcal{M} + \mathcal{B}_{\varepsilon}(0)$ множества \mathcal{M} . Включение $\mathcal{R}(t) \supset \mathcal{M}$ означает, что

$$\max_{x \in \mathcal{M}_{\varepsilon}} \varrho(x, \mathcal{R}(t)) \leqslant \varepsilon,$$

и наоборот, если $\max_{x \in \mathcal{M}_{\varepsilon}} \varrho(x, \mathcal{R}(t)) > \varepsilon$, то $\mathcal{R}(t) \not\supseteq \mathcal{M}$. На языке опорных функций формулируется следующая эквивалентная задача: найти минимум функции $f(p) = s(p, \mathcal{R}(t)) - s(p, \mathcal{M}_{\varepsilon}) = s(p, \mathcal{R}(t)) - s(p, \mathcal{M}) - \varepsilon ||p||$:

(19)
$$\min_{\|p\|=1} f(p) = J.$$

Если $J \ge -\varepsilon$, то $\mathcal{R}(t) \supset \mathcal{M}$, если же $J < -\varepsilon$, то $\mathcal{R}(t) \not\supseteq \mathcal{M}$.

Как обычно, $S_1 = \{p : ||p|| = 1\}$ и $S = \{p \in S_1 : f(p) \leq 0\}$. Пусть $p_0 \in S_1$ – решение задачи(19).

Предполагаем, что $\mathcal{S} \neq \emptyset$. Рассмотрим следующий итерационный процесс:

(20)
$$p_1 \in \mathcal{S}, \qquad p_{k+1} = P_{\mathcal{S}_1}(p_k - \lambda f'(p_k)).$$

Теорема 4. Пусть выполняются предположения раздела 4, причем в задаче (19) выполняется J < 0. Пусть $r = r(t) - R - \varepsilon > 0$, $L = ||\mathcal{R}(t) \stackrel{*}{\to} \mathcal{M}_{\varepsilon}||$. Тогда для любых $p_1 \in S$ и $0 < \lambda \leq \min\{r^2/R_T^3, 1/(2L), 1/(2R_T)\}$ итерации (20) сходятся с линейной скоростью к решению p_0 :

$$||p_{k+1} - p_0|| \leq q ||p_k - p_0||, \qquad q = \sqrt{1 - \frac{2r^2}{R_T}\lambda + R_T^2\lambda^2} \in (0, 1).$$

Замечание 3. Как и в разделе 3, результаты верны при более локальных предположениях. Вместо сильной выпуклости \mathcal{M} с радиусом R_0 в предположении 3 можно потребовать выполнения для всех $p \in \mathcal{S}$ опорного принципа для множества \mathcal{M} : существует $R_0 > 0$, такое что

(21)
$$\mathcal{M} \subset B_{R_0}(\mathcal{M}(p) - R_0 p), \quad \forall p \in \mathcal{S}.$$

Предположения 1, 4 и 5 должны выполняться.

5. Выбор начального приближения p_1 в методе проекции градиента

Начальный вектор p_1 выбирается методом случайного поиска: в задачах (P1)–(P3) берем (равномерно распределенный) случайный вектор $p_1 \in S_1 =$

= { $p \in \mathbb{R}^{n}$: ||p|| = 1} и проверяем неравенство $f(p_{1}) \leq 0$. Если оно не выполнено, то выбирается еще один случайный вектор $p_{1} \in S_{1}$ и так далее. В данном разделе оценим вероятность $\mathbb{P}(\{f(p_{1}) \leq 0\})$ нахождения подходящего вектора p_{1} . Для определенности, рассмотрим задачу (P1) для фиксированного t > 0. Напомним, что J < 0 – решение задачи (11). По предположениям для задачи (P1) множество $\mathcal{N}(t)$ сильно выпукло с радиусом R > 0. Обозначим $z_{0} = P_{\mathcal{N}(t)}0, p_{0} = -z_{0}/||z_{0}||$. Для множества $\mathcal{M} \subset \mathbb{R}^{n}$ обозначим через сопе \mathcal{M} (выпуклую) коническую оболочку, т.е. сопе $\mathcal{M} = \{\sum_{i=1}^{n} \lambda_{i} x_{i} : x_{i} \in \mathcal{M}, \lambda_{i} \geq 0\}$.

Пусть D > 0 и $H = \{x \in \mathbb{R}^n : (p_0, x - z_0) = 0\}$. Предположим, что $\mathcal{K} =$ = cone $(H \cap B_D(z_0)) \supset$ cone $\mathcal{N}(t)$. К примеру, D можно взять равным диаметру множества $\mathcal{N}(t)$, т.е. $D = \sup_{x,y \in \mathcal{N}(t)} ||x - y||$.

Множество \mathcal{K} – конус вращения с осью $[0, z_0)$. Угол между осью и образующей равен α , tg $\alpha = \frac{D}{|J|}$. Поляра $\mathcal{K}^- = \{p \in \mathbb{R}^n : (p, q) \leq 0 \quad \forall q \in \mathcal{K}\}$ также является конусом вращения с осью $[0, -z_0)$, для которого угол между осью и образующей равен $\beta = \frac{1}{2}\pi - \alpha$, таким образом, $\cos \beta = \frac{D}{\sqrt{D^2 + I^2}}$.

По определению \mathcal{K} имеем для всех $p_1 \in \mathcal{S}_1 \cap \mathcal{K}^-$ неравенство $f(p_1) \leq 0$. Обозначим $\mathcal{S}_{\operatorname{cap}} = \mathcal{S}_1 \cap \mathcal{K}^-$ и $\mathcal{S}_0 = \mathcal{K}^- \cap H_0$, где $H_0 = \{x \in \mathbb{R}^n : (p_0, x) = \cos\beta\}$. Заметим, что $\mathcal{S}_0 = H_0 \cap B_{r_0}(p_0 \cos\beta)$, где $r_0 = \sin\beta = \frac{|J|}{\sqrt{D^2 + J^2}}$. (n-1)-мера Лебега, $\mu_{n-1}\mathcal{S}_0 \leq \mu_{n-1}\mathcal{S}_{\operatorname{cap}}$. Таким образом,

$$\mathbb{P}(\{f(p_1) \leq 0\}) \geqslant \frac{\mu_{n-1}\mathcal{S}_{cap}}{\mu_{n-1}\mathcal{S}_1} \geqslant \frac{\mu_{n-1}\mathcal{S}_0}{\mu_{n-1}\mathcal{S}_1} = \frac{r_0^{n-1}}{n} \frac{V_{n-1}}{V_n} = \frac{1}{n} \frac{V_{n-1}}{V_n} \left(\frac{|J|}{\sqrt{D^2 + J^2}}\right)^{n-1},$$

где $V_n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$ – объем единичного шара в \mathbb{R}^n .

Предположим теперь что $B_r(z_0 - rp_0) \subset \mathcal{N}(t)$ для некоторого r > 0. Рассмотрим конус вращения $\mathcal{K} = \operatorname{cone} B_r(z_0 - rp_0) \subset \operatorname{cone} \mathcal{N}(t)$ с осью $[0, z_0)$. Угол между осью и образующей \mathcal{K} равен α , $\sin \alpha = \frac{r}{r+|J|}$. Возьмем поляру $\mathcal{K}^- \supset (\operatorname{cone} \mathcal{N}(t))^-$ с углом β между осью $[0, -z_0)$ и образующей, $\cos \beta = \frac{r}{r+|J|}$. Имеем для произвольных $p_1 \in S_1 : f(p_1) \leq 0$, что $p_1 \in \mathcal{S}_{\operatorname{cap}}$. Как и ранее, $\mathcal{S}_{\operatorname{cap}} = \mathcal{S}_1 \cap \mathcal{K}^-$. Определим $\mathcal{S}_0^1 = \mathcal{K}^- \cap H_1$, где $H_1 =$ $\{x \in \mathbb{R}^n : (p_0, x) = 1\}$. Используя элементарную планиметрию, можно получить, что $\mathcal{S}_0^1 = H_1 \cap B_{r_1}(p_0), r_1 = \operatorname{tg} \beta = \frac{\sqrt{2r|J| + |J|^2}}{r}$. Тогда $\mu_{n-1} \mathcal{S}_0^1 \ge \mu_{n-1} \mathcal{S}_{\operatorname{cap}}$ и

$$\mathbb{P}(\{f(p_1) \le 0\}) \le \frac{\mu_{n-1}S_{\text{cap}}}{\mu_{n-1}S_1} \le \frac{\mu_{n-1}S_0^1}{\mu_{n-1}S_1} = \\ = \frac{r_1^{n-1}}{n} \frac{V_{n-1}}{V_n} = \frac{1}{n} \frac{V_{n-1}}{V_n} \left(\frac{\sqrt{2r|J| + |J|^2}}{r}\right)^{n-1}$$

В итоге для множества $\mathcal{N}(t)$ диаметром D, являющегося равномерно гладким с постоянной r, получаем

(22)
$$\frac{1}{n} \frac{V_{n-1}}{V_n} \left(\frac{|J|}{\sqrt{D^2 + J^2}}\right)^{n-1} \leq \mathbb{P}(\{f(p_1) \leq 0\}) \leq \frac{1}{n} \frac{V_{n-1}}{V_n} \left(\frac{\sqrt{2r|J| + |J|^2}}{r}\right)^{n-1}$$

Подобно правой (верхней) оценке в (22) для R-сильно выпуклого множества $\mathcal{N}(t)$ можно доказать оценку снизу

$$\frac{1}{n} \frac{V_{n-1}}{V_n} \left(\frac{\sqrt{2R|J| + |J|^2}}{R + |J|} \right)^{n-1} \leqslant \mathbb{P}(\{f(p_1) \leqslant 0\}).$$

Эта оценка показывает, что $\mathbb{P}(\{f(p_1) \leq 0\}) \approx |J|^{n-1}$ при $J \to 0$. В рассматриваемых задачах |J| имеет порядок $\varepsilon > 0$, и в данном случае левое неравенство в (22) дает более разумную оценку, так как в большинстве примеров значение D гораздо меньше R.

Полученная вероятность может быть очень мала и сильно влияет на вычисления, в частности, когда |J| близко к нулю или n велико. В экспериментах в приведенных ниже примерах для n в пределах $3 \leq n \leq 12$ вектор p_1 был найден не более чем за несколько десятков попыток для задач (P1), (P2). В задаче (P3) иногда требовалось около 1000 попыток для нахождения подходящего p_1 . Одна из причин относительной эффективности при поиске p_1 случайным поиском заключается в том, что в оценках выше можно выбирать D > 0 много меньше, чем диаметр $\mathcal{N}(t)$. На самом деле достаточно такого D > 0, для которого выполнено включение сопе $(H \cap B_D(z_0)) \supset \operatorname{cone} \mathcal{N}(t)$.

В ряде случаев p_1 можно выбирать детерминированно, см. алгоритм из раздела 6 для нахождения минимального времени t при $\rho(\mathcal{R}(t), \mathcal{M}) = 0$.

Выбор шага λ в алгоритмах решения задач (P1)–(P3) можно осуществлять методом Армихо. Его подробное описание приведено в [29].

6. Моделирование и примеры

Некоторые из приведенных примеров имеют малую размерность (n = 3) для удобства интерпретации. Как показывает объяснение ниже, скорость сходимости для таких примеров и примеров большей размерности практически одна и та же.

Множества достижимости построены с помощью пакета программ на Python [30].

6.1. Задача (Р1). Пример 1.

В этом примере находится момент времени, при котором множество достижимости \mathcal{R} касается целевого множества \mathcal{M} .

Рис. 2. Графики сходимости метода проекции градиента с размером шага $\lambda = 0,1.$ (*a*) задача (P1), пример 1, (*б*) задача (P1), пример 2.

Рассмотрим систему

(23)
$$\dot{x} = Ax + Bu, \quad x(0) = 0, \\ u \in \mathbb{R} : \quad |u| \leq 1, \\ A = \begin{bmatrix} -1,3 & 1 & 0 \\ 0 & -1,3 & 1 \\ 0 & 0 & -1,3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Целевым множеством является $\mathcal{M} = \mathcal{M}_0 + B_r(0)$, где \mathcal{M}_0 – шар $B_{0,2}(0,7, -0,3, 0,35), r = 0,5$. Напомним, что f(p) в задаче (11) зависит от t, т.е. $f(p,t) = s(p, \mathcal{R}(t)) + s(p, -\mathcal{M}_0)$.

Сначала рассмотрим вспомогательную задачу поиска расстояния между множествами $\mathcal{R}(t)$ и \mathcal{M} для t = 1, с начальным условием $p_1 = (0,03123620, -0.72453809, 0.68852659), f(p_1, 1) = -0.05270947.$

На рис. 2,*a* показана сходимость метода проекции градиента для вспомогательной задачи $\min_{\|p\|=1} f(p,t)$. Скорость сходимости линейная, с оценкой $f(p_k, 1) - f(p_0, 1) \approx 0.2486 \times 0.8304^k$. Найденное оптимальное значение $p_0 = (0.87540058, -0.46926876, 0.11602002), f(p_0, 1) = -0.57398898.$

Множество достижимости и ближайшая к целевому множеству точка изображены на рис. 3.

При поиске оптимального времени касания заранее известен только интервал поиска [0,T], но не начальное приближение p_1 для произвольно выбранного момента времени из этого интервала. Есть две разные стратегии. Первый – случайно выбирать $p_1 \in S_1$, такой что $f(p_1,t) < 0$ для данного t, и увеличивать t на небольшую величину. Второй алгоритм более сложный и использует временной характер задачи (P1). Этот алгоритм отслеживает подходящее начальное приближение p(t), f(p,t) < 0 при увеличении времени.

Рис. 3. Ближайшая к целевому множеству \mathcal{M} точка множества достижимости $\mathcal{R}(t)$ для t = 1, найденная методом проекции градиента (задача (P1), пример 1).

Алгоритм для задачи (P1) (поиск минимального времени) Информация: T > 0, r > 0, функция f(p, t), требуемая точность $\varepsilon_{tol} > 0$, ограничения $t_{lower} = 0, t_{upper} = T$, начальный шаг по времени $\Delta_t > 0$.

- 1. Положим $t \leftarrow 0$ и найдем начальное приближение p_1 , удовлетворяющее $f(p_1, 0) < 0$. Далее запустим метод проекции градиента, который даст $p(0) = \arg\min_{\|p\|=1} f(p, 0) : f(p(0), 0) < 0.$
- 2. Положим $t_{\text{test}} = \min\{t + \Delta_t, t_{\text{upper}}\}.$ Если $f(p(t), t_{\text{test}}) \ge 0$, то полагаем $\Delta_t \leftarrow \Delta_t/2$ и повторяем этот шаг. Если $f(p(t), t_{\text{test}}) < 0$, то переходим к шагу 3.
- 3. Запустим метод проекции градиента (13) для функции $f(p, t_{\text{test}})$ с начальной точкой $p_1 = p(t)$. Это дает p_0 и $J = f(p_0, t_{\text{test}}) = \min_{\|p\|=1} f(p, t_{\text{test}}) < 0$.
- 4. Если $J > -r + \varepsilon_{\text{tol}}$, то множество достижимости в момент t_{test} пересекается с множеством \mathcal{M} . Обновим $t_{\text{upper}} \leftarrow t_{\text{test}}$, $\Delta_t \leftarrow \frac{1}{2} \min\{\Delta_t, t_{\text{upper}} - t_{\text{lower}}\}$ и перейдем к шагу 2 с теми же t и p(t). Иначе переходим к шагу 5.
- 5. Если $J < -r \varepsilon_{\text{tol}}$, то множество достижимости еще не достигло множества \mathcal{M} . Обновим $t_{\text{lower}} \leftarrow t_{\text{test}}, \Delta_t \leftarrow \min\{2\Delta_t, \frac{t_{\text{upper}} - t_{\text{lower}}}{2}\}$. Также обновим $t \leftarrow t_{\text{test}}, p(t) \leftarrow p_0$ и перейдем к шагу 2. Иначе переходим к конечному шагу 6.
- 6. Решение найдено с требуемой точностью: $|J + r| \leq \varepsilon_{\text{tol}}$. Возвращаем $t_0 = t_{\text{test}}$, как оптимальное время для задачи (P1), и p_0 .

Замечания: алгоритм реализует метод наподобие поиска делением пополам на отрезке [0, T]. Вероятность найти подходящее p_1 на шаге 1 может быть оценена с использованием результатов раздела 5. Тем не менее начальное приближение может быть получено без случайного поиска в шаге 1. Так

Рис. 4. Множество достижимости в момент касания целевого множества и оптимальная траектория (задача (P1), пример 1).

как $\mathcal{R}(0) = 0$, то достаточно найти единичный отделяющий вектор $p_1 \in \mathbb{R}^n$ для \mathcal{M} , такой что $(p_1, x) < 0$ для всех $x \in -\mathcal{M}_0$. Далее каждый раз на шаге 2 начальное приближение p_1 в методе проекции градиента выбирается детерминированным образом. На шаге 5 шаг времени удваивается для ускорения поиска. Алгоритм также можно применять, если значение T неизвестно (т.е. $t_{upper} = \infty$), но для $t_{upper} > T$ необходимые условия сходимости метода проекции градиента могут нарушаться. Тем не менее соблюдается инвариант $t_{lower} \leq t_{test} \leq t_{upper}$.

Алгоритм останавливается при получении J с заданной точностью ε_{tol} , во всех примерах далее $\varepsilon_{tol} = 10^{-7}$ и в результате получены $t_{upper} - t_{lower} \sim 10^{-6}$. Также можно останавливаться при достижении требуемой точности по времени t: т.е. при $t_{upper} - t_{lower} \leq \varepsilon_{time}$ заканчиваем вычисления и берем $t \in [t_{lower}, t_{upper}]$. Здесь $\varepsilon_{time} > 0$ – допустимая ошибка по времени.

Для системы (23) алгоритм сходится за 21 шаг. Найденное оптимальное время равно 2,73838424 при

$$p_0 = (0,77091811, -0,60777697, 0,19050571).$$

На рис. 4 изображено множество достижимости и целевое множество в момент касания, а также оптимальная траектория (9) с двумя переключениями, приводящая к целевому множеству [24].

Как было показано во введении, множество достижимости $\mathcal{R}(t)$ системы (23) не является сильно выпуклым. Для $\mathcal{U} = B[-1, 1]$ и t > 0 получаем $s(p, \mathcal{R}(t)) = \int_0^t e^{-1,3s} |p_1 \frac{s^2}{2} + p_2 s + p_3| ds$ для любого $p = (p_1, p_2, p_3) \in \mathcal{S}_1$. Для решения $p_0 = (0,77091811, -0,60777697, 0,19050571)$ и t = 2,73838424 по-

лучаем корни $s_1(p_0) < s_2(p_0)$ уравнения $p_1 \frac{s^2}{2} + p_2 s + p_3 = 0$ для $p = p_0$. По теореме об обратной функции корни $S_1 \ni p \to s_i(p), i = 1, 2$, уравнения $p_1 \frac{s^2}{2} + p_2 s + p_3 = 0$ аналитичны в некоторой окрестности точки $p_0 \in S_1$. Другими словами, существует число $\gamma > 0$, такое что функции

$$\mathcal{S}_1 \cap B_\gamma(p_0) \ni p \to s_i(p), \quad i = 1, 2,$$

являются липпицевыми некоторой постоянной L > 0. Более того, можно выбрать такое число $\gamma > 0$, что первые компоненты векторов из $S_1 \cap B_{\gamma}(p_0)$ положительны и $\max\{s_1(p), s_1(q)\} \leq \min\{s_2(p), s_2(q)\}$ для всех $p, q \in S_1 \cap B_{\gamma}(p_0)$.

Фиксируем пару точек $p, q \in S_1 \cap B_{\gamma}(p_0)$. Положим $M = \max_{s \in [0,t]} \|e^{As}\|$. Тогда $|s_i(p) - s_i(q)| \leq L \|p - q\|$ для i = 1, 2, и используя оценку $\|\mathcal{U}(e^{A^\top s}p) - \mathcal{U}(e^{A^\top s}q)\| \leq 2$, получаем для опорного элемента

$$\|\mathcal{R}(t)(p) - \mathcal{R}(t)(q)\| = \sum_{i=1}^{2} \left\| \int_{s_i(p)}^{s_i(q)} e^{As} (\mathcal{U}(e^{A^{\top}s}p) - \mathcal{U}(e^{A^{\top}s}q)) \, ds \right\| \leq 4ML \|p - q\|.$$

Таким образом, поверхность $\{\mathcal{R}(t)(p) : p \in S_1 \cap B_{\gamma}(p_0)\}$ – это часть сильно выпуклого множества с радиусом R = 4ML. В текущем примере этого достаточно для сходимости метода проекции градиента для времени t. Та же ситуация имеет место для ранних моментов времени.

6.2. Задача (Р1). Пример 2.

Рассмотрим пример в \mathbb{R}^{12}

 $A = \text{diag}(-0,3, -0,8, -1, -0,7, -0,71, -0,52, -0,37, -0,05, -0,25, -0,89, -0,99, -0,2), \ \mathcal{U} = B_1(0).$ Целевым множеством является $\mathcal{M} = \mathcal{M}_0 + B_r(0)$, где \mathcal{M}_0 – шар $B_{0,4}(0,3 \times \mathbf{1})$ ($\mathbf{1} = (1, 1, \ldots, 1)$), r = 0,2, размер шага $\lambda = 0,1$.

Рисунок 2,
б: Сходимость метода проекции градиента для вспомогательной задач
и $\min_{\|p\|=1} f(p,t)$ для времени t=0,5и начального условия

 $p_1 = (0,02046203, 0,24278712, 0,21998230, 0,33539534, 0,11750331, 0,07584814, 0,44196329, 0,14159412, 0,08314335, 0,32560626, 0,49401057, 0,43339861),$

где $f(p_1, 0, 5) = -0.04771303.$

Оценка скорости сходимости: $f(p_k,0,5)-f(p_0,0,5)\approx 0,1218\times 0,8122^k.$ Оптимальное значение равно

 $p_0 = (0,27300370, 0,30197686, 0,31253360, 0,29647251, 0,29702965, 0,28619273, 0,27727228, 0,25724610, 0,26991497, 0,30680235, 0,31202019, 0,26679398),$

где $f(p_0, 0, 5) = -0,20238418.$

Рис. 5. k-е компоненты u_k оптимального управления (задача (P1), пример 2).

Алгоритм сходится за 21 шаг к точке

 $p_0 = (0,27281666, 0,30212210, 0,31280135, 0,29655398, 0,29711758, 0,28615572, 0,27713348, 0,25688441, 0,26969324, 0,30700357, 0,31228196, 0,26653741),$

полученное оптимальное время равно 0,50315046.

Рисунок 5 показывает оптимальное управление (покомпонентно, каждая линия изображает одну из 12 компонент).

6.3. Задача (Р2). Пример 3.

Множество достижимости касается целевого множества внутренним образом, оно такое же, как в задаче (P1), пример 1 (формула (23)).

Целевое множество – эллипсоид $\mathcal{M} = \{x : (x - c)^\top Q(x - c) \leq R^2\}$, где

$$Q = \begin{bmatrix} 4,5 & -1,2 & -1,6\\ -1,2 & 6,8 & -2,3\\ -1,6 & -2,3 & 8 \end{bmatrix}, \quad c = \begin{bmatrix} -3,4\\ -3,8\\ 0,3 \end{bmatrix}, \quad R = 12.$$

Напомним, что $f(p,t) = s(p, \mathcal{M}) - s(p, \mathcal{R}_{\varepsilon}(t))$, здесь взято $\varepsilon = 0.05$, размер шага $\lambda = 0.2$.

Рисунок 6: для системы (23) похожий алгоритм деления пополам сходится за 19 шагов (т.е. $|J + \varepsilon| \leq \varepsilon_{\text{tol}} = 10^{-7}$). Оптимальное время t = 1,64610733, $p_0 = (0,36800454, 0,72705740 - 0,57962073)$.

Рис. 6. Решение задачи (Р2) для примера 3.

6.4. Задача (Р2). Пример 4. Гомотет внутри целевого множества.

Решим задачу (Р2) для гомотета, т.е. задачу, поставленную в виде

(24)
$$\max_{t \ge 0} t : \quad t\mathcal{R} \subset \mathcal{M}.$$

Определим $\mathcal{M} = B_{10}(0)$, т.е. шар с центром в 0 и радиусом 10. Множество \mathcal{R} – сильно выпуклый отрезок с концами [-0,1, 3, 2,05884573],[-1,9, 3, -1,05884573] и радиусом сильной выпуклости R = 3, т.е. \mathcal{R} – пересечение всех шаров радиуса R = 3, содержащих обе концевых точки.

Опорный элемент для единичного вектора $p = (p_1, \ldots, p_n)$ и сильно выпуклого отрезка с концами [-ae₁, ae₁] и радиусом сильной выпуклости R > aравен $Rp - \frac{\sqrt{R^2 - a^2}}{\sqrt{1 - p_1^2}} (I - e_1 e_1^\top) p$, если $\operatorname{arctg}\left(\frac{p_1}{\sqrt{1 - p_1^2}}\right) < \operatorname{arcsin}(\frac{a}{R})$, в противном случае он равен sign $(p_1)ae_1$. Рассмотрим гомотетию $t\mathcal{R}$ с параметром $\varepsilon = 0,1$ в определении f (15) и размером шага $\lambda = 0,2$.

Для t = 3 множество $t\mathcal{R}$ не содержится в \mathcal{M} , см. рис. 7. Алгоритм, похожий на приведенный для задачи (Р2), сходится за 21 шаг к оптимальным значениям $t_0 = 2,62904820$ и $p_0 = (-0,34257770, 0,93398621, 0,10153957)$ (т.е. $|J + \varepsilon| \leq \varepsilon_{\text{tol}} = 10^{-7}$).

6.5. Задача (РЗ). Пример 5.

Рассмотрим пример в \mathbb{R}^{10}

 $A = \text{diag}(0,1, 0,75, 0,8, 0,81, 0,82, 0,95, 1,0, 1,0, 1,05, 1,1), \ \mathcal{U} = B_1(0).$

Рис. 7. Задача (P2), пример 4. Гомотет при t = 3 не содержится в \mathcal{M} .

Целевое множество равно $\mathcal{M} = B_{0,1}(0,1 \times \mathbf{1}), (\mathbf{1} = (1, 1, \ldots, 1)), \varepsilon = 0,1,$ размер шага $\lambda = 0,1.$

Понадобился 21 запуск метода проекции градиента, чтобы получить решение

 $p_0 = (0,44643102, 0,32328081, 0,31539020, 0,31383560, 0,31228874, 0,29286442, 0,28572048, 0,28572048, 0,27875066, 0,27195027)$

и оптимальное время 0,35823087.

7. Заключение

В работе на основе решения задачи (1) предложены эффективные методы решения ряда задач (P1)–(P3), в том числе задачи поиска расстояния и включения множеств. Доказана линейная скорость сходимости алгоритмов. Рассмотренные примеры показывают эффективность предложенных методов.

ПРИЛОЖЕНИЕ

Доказательство леммы 1. Умножим обе части неравенства на $\sqrt{\|p\|} \|q\|$ и возведем в квадрат.

Доказательство леммы 2. Из равенства $e^{As} = Je^{A_1s}J^{-1}$ получаем

$$\mathcal{R}(t) = \int_{0}^{t} J e^{A_1 s} J^{-1} \mathcal{U} \, ds = \int_{0}^{t} J e^{A_1 s} \mathcal{U}_1 \, ds = J \mathcal{R}_1(t).$$

Требуемое утверждение следует из [25, Теорема 3].

80

Доказательство леммы 3. По определению $\mathcal{U} = \mathcal{U}_0 + \mathcal{B}_r(0)$. Тогда $\mathcal{R}(t) = \mathcal{R}_0(t) + r \int_0^t e^{As} \mathcal{B}_1(0) \, ds$,

$$\mathcal{R}_0(t) = \int\limits_0^t e^{As} \mathcal{U}_0 \, ds.$$

Достаточно показать, что эллипсоид $e^{As}\mathcal{B}_1(0)$ равномерно гладкий с постоянной $r(s) = \frac{\lambda_n^2(s)}{\lambda_1(s)}$. Рассмотрим ортонормированный базис, в котором эллипсоид $e^{As}\mathcal{B}_1(0)$ принимает канонический вид

$$\mathcal{N} = \left\{ x \in \mathbb{R}^n : \sum_{k=1}^n \frac{x_k^2}{\lambda_k^2} \leqslant 1 \right\}, \quad \lambda_k = \lambda_k(s).$$

Тогда матрица $L = \text{diag} \{\lambda_1, \ldots, \lambda_n\}$ дает $L\mathcal{B}_1(0) = \mathcal{N}$. Эллипсоид $\mathcal{V} = \{x : \sum_{k=1}^n \lambda_k^2 x_k^2 \leq 1\}$ сильно выпуклый с радиусом $\rho = \lambda_1/\lambda_n^2$. Следовательно, существует выпуклый компакт \mathcal{P} , такой что $\mathcal{V} + \mathcal{P} = \mathcal{B}_{\rho}(0)$. Учитывая, что $L\mathcal{V} = \mathcal{B}_1(0)$, получаем:

$$L\mathcal{V} + L\mathcal{P} = L\mathcal{B}_{\rho}(0) = \rho L\mathcal{B}_{1}(0) = \rho \mathcal{N} \quad \Leftrightarrow \quad \frac{1}{\rho}\mathcal{B}_{1}(0) + \frac{1}{\rho}\mathcal{P} = \mathcal{N}.$$

Таким образом множество \mathcal{N} является равномерно гладким с постоянной $\frac{1}{\rho} = \lambda_n^2/\lambda_1$.

Доказательство теоремы 1. Пусть I – единичная матрица, $p_0 \in S_1$ – решение задачи (11). Из необходимого условия экстремума имеем $f(p_0) = (p_0, f'(p_0)) = -\|f'(p_0)\|$. Тогда $P_{\mathcal{T}_p} = I - pp^{\top}$ для любого $p \in S_1$ и $\|(I - pp^{\top})f'(p)\|^2 = \|f'(p)\|^2 - f^2(p)$. Следовательно, для всех $p \in S$ получаем $\|f'(p)\|^2 - f^2(p) = (\|f'(p)\| - f(p))(\|f'(p)\| + f(p_0) + f(p) - f(p_0)).$

Из неравенства $f(p) \leq 0$ и того, что опорный элемент $f'(p_0) = \mathcal{N}(t)(p_0)$ имеет минимально возможную норму, получаем, что $||f'(p)|| - f(p) \ge ||f'(p)|| \ge$ $\ge ||f'(p_0)|| = |J|$. Остается заметить, что $||f'(p)|| + f(p_0) = ||f'(p)|| - ||f'(p_0)|| \ge 0$.

Для любых двух векторов $p, q \in \mathbb{R}^n$, $1 - \varepsilon \leq ||p||, ||q|| \leq 1 + \varepsilon$ из леммы 1 получаем, что $\left\| \frac{p}{||p||} - \frac{q}{||q||} \right\| \leq \frac{||p-q||}{\sqrt{||p|| ||q||}}$. Фиксируем такие p, q. Тогда из липшицевости опорного элемента $f'(\xi) = \mathcal{N}(t)(\xi)$ на единичной сфере с постоянной R и равенства $f'(\xi) = f'(\xi/||\xi||)$, для всех $\xi \neq 0$, получаем

$$||f'(p) - f'(q)|| \leq R \left\| \frac{p}{\|p\|} - \frac{q}{\|q\|} \right\| \leq \frac{R \|p - q\|}{\sqrt{\|p\|} \|q\|} \leq \frac{R}{1 - \varepsilon} \|p - q\|$$

 \mathcal{A} оказательство теоремы 2. Определим $q_k = p_k - \lambda f'(p_k), ||q_k|| \ge$ $\ge 1 - \lambda ||f'(p_k)|| \ge 1 - \lambda L \ge \frac{1}{2}.$ Из $||p_k|| = ||p_{k+1}|| = 1$, леммы 1 и неравенства

$$||p_{k+1} - p_k|| = ||P_{\mathcal{S}_1}(p_k - \lambda f'(p_k)) - p_k|| \leq \frac{||p_k - q_k||}{\sqrt{||p_k|| ||q_k||}} \leq \leq \lambda \sqrt{2} ||f'(p_k)|| \leq \lambda \sqrt{2}L \leq \frac{1}{\sqrt{2}}$$

получаем $[p_k, p_{k+1}] \subset \{p \in \mathbb{R}^n : \frac{1}{2} \leq \|p\| \leq \frac{3}{2}\}$. По теореме 1 f' имеет постоянную Липпица $L_1 = R/(1-\frac{1}{2}) = 2R$ на отрезке $[p_k, p_{k+1}]$.

Также имеет место условие LPL для функции f на множестве S по теореме 1 для $\mu = |J|$.

Фиксируем λ из предложения и $\ell = \frac{1}{\lambda} \ge L_1$. Положим $z_k = \|\ell p_k - f'(p_k)\| - (p_k, p_k - f'(p_k)) \ge 0$,

(II.1)
$$z_k = \frac{\|(I - p_k p_k^\top) f'(p_k)\|^2}{\|\ell p_k - f'(p_k)\| + (p_k, p_k - f'(p_k))} \ge \frac{\|(I - p_k p_k^\top) f'(p_k)\|^2}{2\|\ell p_k - f'(p_k)\|}$$

Имеем

$$||p_{k+1} - p_k||^2 = 2 - 2\frac{(p_k, \ell p_k - f'(p_k))}{\|\ell p_k - f'(p_k)\|} = \frac{2z_k}{\|\ell p_k - f'(p_k)\|}$$

и из липшицевости f^\prime на отрезк
е $[p_k,p_{k+1}]$ с постоянной L_1

$$\begin{split} f(p_{k+1}) - f(p_k) &\leqslant (f'(p_k), p_{k+1} - p_k) + \frac{L_1}{2} \|p_{k+1} - p_k\|^2 = \\ &= (p_k, L_1 p_k - f'(p_k)) - \left(L_1 p_k - f'(p_k), \frac{\ell p_k - f'(p_k)}{\|\ell p_k - f'(p_k)\|}\right) = \\ &= \left(\ell p_k - f'(p_k) + (L_1 - \ell) p_k, p_k - \frac{\ell p_k - f'(p_k)}{\|\ell p_k - f'(p_k)\|}\right), \\ f(p_{k+1}) - f(p_k) &\leqslant -z_k + (L_1 - \ell) \left(p_k, p_k - \frac{\ell p_k - f'(p_k)}{\|\ell p_k - f'(p_k)\|}\right) = \\ &= -z_k + \frac{L_1 - \ell}{\|\ell p_k - f'(p_k)\|} z_k \leqslant -z_k. \end{split}$$

Из (П.1) и условия LPL с $\mu = |J|$ получаем, что

$$f(p_{k+1}) - f(p_k) \leqslant -\frac{\|(I - p_k p_k^\top) f'(p_k)\|^2}{2\|\ell p_k - f'(p_k)\|} \leqslant -\frac{|J|}{2\|\ell p_k - f'(p_k)\|} (f(p_k) - f(p_0)).$$

Определим $\varphi(p) = f(p) - f(p_0)$ для всех $p \in S_1$. Из оценки $||\ell p_k - f'(p_k)|| \le \le \ell + ||f'(p_k)|| \le \ell + L$ получаем

$$\varphi(p_{k+1}) \leqslant \left(1 - \frac{|J|}{2\ell + 2L}\right)\varphi(p_k) = q\varphi(p_k)$$

и $q \in (0,1)$, так как $|J| = \varrho(0, \mathcal{N}(t)) \leq ||\mathcal{N}(t)|| = L.$

Для точек $\{p_k\}$ имеем (заметим, что $||p_k - \lambda f'(p_k)|| \ge 1$)

$$\|p_{k+1} - p_k\|^2 \leq \frac{2z_k}{\|\ell p_k - f'(p_k)\|} \leq \frac{2\lambda(f(p_k) - f(p_{k+1}))}{\|p_k - \lambda f'(p_k)\|} \leq 2\lambda\varphi(p_k).$$

Доказательство теоремы 3. Рассмотрим функцию

$$f(p) = s(p, \mathcal{M}_0) + r ||p|| - s(p, \mathcal{R}_{\varepsilon}(t)).$$

Множество $\mathcal{R}_{\varepsilon}(t)$ сильно выпукло с радиусом $R_T + \varepsilon < r$. Следовательно, существует выпуклый компакт $\mathcal{N}(t)$, такой что $\mathcal{R}_{\varepsilon}(t) + \mathcal{N}(t) = \mathcal{B}_{R_T + \varepsilon}(0)$ и $r \|p\| - s(p, \mathcal{R}_{\varepsilon}(t)) = (r - R_T - \varepsilon) \|p\| + s(p, \mathcal{N}(t))$. Таким образом

$$f(p) = s(p, \mathcal{M}_0) + (r - R_T - \varepsilon) ||p|| + s(p, \mathcal{N}(t)) =$$

= $s(p, \mathcal{M}_0 + \mathcal{N}(t) + \mathcal{B}_{r-R_T-\varepsilon}(0))$

и функция f(p) является опорной функцией множества $\mathcal{N}(t) = \mathcal{M} \stackrel{*}{=} \mathcal{R}_{\varepsilon}(t) =$ = $\mathcal{M}_0 + \mathcal{N}(t) + \mathcal{B}_{r-R_T-\varepsilon}(0)$. Это множество сильно выпукло с радиусом R_0 и является равномерно гладким с постоянной $r_0 = r - R_T - \varepsilon > 0$. Функция f' липпицева на S_1 с постоянной R_0 и так же, как в доказательстве теоремы 2, $[p_k, p_{k+1}] \subset \{p \in \mathbb{R}^n : \frac{1}{2} \leq \|p\| \leq \frac{3}{2}\}$. Таким образом, для любого p из отрезка $[p_k, p_{k+1}]$ имеем $\|p\| \ge \frac{1}{2}$ и для любых $p, q \in [p_k, p_{k+1}]$ по лемме 1

$$\|f'(p) - f'(q)\| = \left\| f'\left(\frac{p}{\|p\|}\right) - f'\left(\frac{q}{\|q\|}\right) \right\| \le \le R_0 \left\| \frac{p}{\|p\|} - \frac{q}{\|q\|} \right\| \le R_0 \frac{\|p - q\|}{\sqrt{\|p\|} \|q\|} \le 2R_0 \|p - q\|,$$

т.е. f' – липшицево отображение на любом отрезке $[p_k, p_{k+1}]$ с постоянной $2R_0$. Из липшицевости f' и предложения 2 $f(p_k) \leq 0$ для всех k.

$$||p_{k+1} - p_0||^2 = ||P_{\mathcal{S}_1}(p_k - \lambda f'(p_k)) - P_{\mathcal{S}_1}(p_0 - \lambda f'(p_0))||^2,$$

$$||p_k - \lambda f'(p_k)|| \ge 1, ||p_0 - \lambda f'(p_0)|| \ge 1,$$

т.е. $p_k - \lambda f'(p_k) \notin \text{ int } B_1(0), \, p_0 - \lambda f'(p_0) \notin \text{ int } B_1(0),$ и тогда

$$||p_{k+1} - p_0||^2 \leq ||p_k - p_0 + \lambda(f'(p_k) - f'(p_0))||^2 \leq \leq ||p_k - p_0||^2 - 2\lambda(p_k - p_0, f'(p_k) - f'(p_0)) + \lambda^2 ||f'(p_k) - f'(p_0)||.$$

Из сильной выпуклости множества $\mathcal{N}(t)$ с радиусом R_0 имеем $||f'(p_k) - -f'(p_0)|| \leq R_0 ||p_k - p_0||$. Также из сильной выпуклости множества $\mathcal{N}(t)$ с радиусом R_0 имеем [28, Теорема 2.1 (h)] $(p_k - p_0, f'(p_k) - f'(p_0)) \geq \frac{1}{R_0} ||f'(p_k) - f'(p_0)||^2$. Из равномерной гладкости множества $\mathcal{N}(t)$ с постоянной r_0 [28, Определение 3.2, Теорема 3.6] имеем

$$(p_k - p_0, f'(p_k) - f'(p_0)) \ge \frac{1}{R_0} ||f'(p_k) - f'(p_0)||^2 \ge \frac{r_0^2}{R_0} ||p_k - p_0||^2.$$

Таким образом, $||p_{k+1} - p_0||^2 \leq q^2 ||p_k - p_0||^2$.

Доказательство теоремы 4. Повторяется доказательство теоремы 3. В частности, функция f(p) – опорная функция множества $\mathcal{R}(t) \stackrel{*}{=} \mathcal{M}_{\varepsilon} = \mathcal{R}(t) \stackrel{*}{=} \mathcal{M} \stackrel{*}{=} \mathcal{B}_{\varepsilon}(0)$. Это множество сильно выпукло с постоянной R_T и является равномерно гладким с постоянной r.

СПИСОК ЛИТЕРАТУРЫ

- Ioffe A.D. Metric regularity a survey Part I and II // J. Aust. Math. Soc. 2016.
 V. 101. P. 188–243; P. 376–417.
- Luke D.R. Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space // SIAM J. Optim. 2008. V. 19. No. 2. P. 714–739.
- Grünewälder S. Compact convex projections // J. Mach. Learn. Res. 2018. V. 18. No. 2019. P. 1–43.
- Sosa W., Raupp F.M.P An algorithm for projecting a point onto a level set of a quadratic function // Optimization. 2022. V. 71. No. 1. P. 71–89.
- Bregman L.M., Censor Y., Reich S., Zepkowitz-Malachi Y. Finding the projection of a point onto the intersection of convex sets via projections onto half-spaces // J. Approx. Theory. 2003. V. 124. No. 2. P. 194–218.
- Aumann R. Integrals of set-valued functions // J. Math. Anal. Appl. 1965. V. 12. No. 1. P. 1–12.
- Ляпунов А.А. О вполне аддитивных вектор-функциях // Изв. АН СССР. Сер. матем. 1940. Т. 4. № 6. С. 465–478.
- Frankowska H., Olech C. R-convexity of the integral of the set-valued functions. Contributions to analysis and geometry (Baltimore, Md., 1980) / Johns Hopkins Univ. Press, Baltimore, Md., 1981. P. 117–129.
- Vial J.-Ph. Strong and Weak Convexity of Sets and Functions // Math. Oper. Res. 1983. V. 8. No. 2. P. 231–259.
- Balashov M.V., Repovs D. Uniformly convex subsets of the Hilbert space with modulus of convexity of the second order // J. Math. Anal. Appl. 2011. V. 377. No. 2. P. 754–761.
- Veliov V.M. On the convexity of integrals of multivalued mappings: application in control theory // J. Optim. Theor. Appl. 1987. V. 54. No. 3. P. 541–563.
- Veliov V.M. Second order discrete approximations to strongly convex differential inclusions // Syst. Control Lett. 1989. V. 13. No. 3. P. 263–269.
- Althoff M., Frehse G., Girard A. Set propagation techniques for reachability analysis // Annu. Rev. Control Robot. Auton. Syst. 2021. V. 4. P. 369–395.
- Le Guernic C., Girard A. Reachability analysis of linear systems using support functions // Nonlinear Anal. Hybrid Syst. 2010. V. 4. P. 250–262.
- Gruber P.M. Approximation of convex bodies / Convexity and Its Applications. Basel Birkhäuser, 1983. P. 131–162.
- Serry M., Reissig G. Over-approximating reachable tubes of linear time-varying systems // IEEE Trans. Automat. Control. V. 67. No. 1. P. 443–450.
- 17. Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes, theory and computation // Ser. Systems and Control: Foundations and Applications. Birkhauser/Springer, 2014.
- Левитин Е.С., Поляк Б.Т. Методы минимизации при наличии ограничений // Журн. вычисл. матем. и матем. физ. 1966. Т. 6. № 5. С. 1–50.
- 19. Балашов М.В., Половинкин Е.С. М-сильно выпуклые множества и их порождающие подмножества // Матем. сб. 2000. Т. 191. № 1. С. 25–60.
- Cannarsa P., Frankowska H. Interior sphere property of attainable sets and time optimal control problems // ESAIM Control Optim. Calc. Var. 2006. V. 12. No. 2. P. 350–370.

- Balashov M.V., Polyak B.T., Tremba A.A. Gradient projection and conditional gradient methods for constrained nonconvex minimization // Numer. Funct. Anal. Optim. 2020. V. 41. No. 7. P. 822–849.
- 22. Балашов М.В. Сильная выпуклость множеств достижимости линейных систем // Матем. сб. 2022. Т. 213. № 5. С. 30–49.
- 23. Болтянский В.Г. Математические методы оптимального управления. Наука, 1969.
- 24. Тремба А.А. Вычисление множества достижимости линейных стационарных систем с помощью опорной функции и опорных элементов // Материалы XVI Международной научной конференции Устойчивость и колебания нелинейных систем управления (конференция Пятницкого). ИПУ РАН, Москва, 2022. С. 437–441.
- 25. *Половинкин Е.С.* Сильно выпуклый анализ // Матем. сб. 1996. Т. 187. № 2. С. 259–286.
- 26. Bolte J., Sabach Sh., Teboulle M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems // Math. Program. 2014. V. 146. P. 459–494.
- Balashov M.V., Tremba A.A. Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds // Optimization. 2022. V. 71. No. 3. P. 711–735.
- Ivanov G.E., Goncharov V.V. Strong and weak convexity of closed sets in a Hilbert space / Operations Research, Engineering, and Cyber Security. Springer Optimization and Its Applications. Springer, 2017. Vol. 113. P. 259–297.
- Балашов М.В., Камалов Р.А. Метод проекции градиента с шагом Армихо на многообразиях // Журн. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1776–1786.
- 30. Tremba A. Computing reachability set with support function and support points: Python code repository. https://github.com/atremba/lti-reachability-set

Статья представлена к публикации членом редколлегии П.С. Щербаковым.

Поступила в редакцию 25.01.2024 После доработки 12.03.2024 Принята к публикации 20.03.2024